FLIP-147: Support Checkpoints After Tasks Finished - Part One

July 11, 2022 - Yun Gao Dawid Wysakowicz Daisy Tsang

Motivation # Flink is a distributed processing engine for both unbounded and bounded streams of data. In recent versions, Flink has unified the DataStream API and the Table / SQL API to support both streaming and batch cases. Since most users require both types of data processing pipelines, the unification helps reduce the complexity of developing, operating, and maintaining consistency between streaming and batch backfilling jobs, like the case for Alibaba. ...

Continue reading »

FLIP-147: Support Checkpoints After Tasks Finished - Part Two

July 11, 2022 - Yun Gao Dawid Wysakowicz Daisy Tsang

In the first part of this blog, we have briefly introduced the work to support checkpoints after tasks get finished and revised the process of finishing. In this part we will present more details on the implementation, including how we support checkpoints with finished tasks and the revised protocol of the finish process. Implementation of support Checkpointing with Finished Tasks # As described in part one, to support checkpoints after some tasks are finished, the core idea is to mark the finished operators in checkpoints and skip executing these operators after recovery. ...

Continue reading »

Apache Flink 1.15.1 Release Announcement

July 6, 2022 - David Anderson (@alpinegizmo)

The Apache Flink Community is pleased to announce the first bug fix release of the Flink 1.15 series. This release includes 62 bug fixes, vulnerability fixes, and minor improvements for Flink 1.15. Below you will find a list of all bugfixes and improvements (excluding improvements to the build infrastructure and build stability). For a complete list of all changes see: JIRA. We highly recommend all users upgrade to Flink 1.15.1. ...

Continue reading »

Apache Flink 1.14.5 Release Announcement

June 22, 2022 - Xingbo Huang

The Apache Flink Community is pleased to announce another bug fix release for Flink 1.14. This release includes 67 bugs, vulnerability fixes and minor improvements for Flink 1.14. Below you will find a list of all bugfixes and improvements (excluding improvements to the build infrastructure and build stability). For a complete list of all changes see: JIRA. We highly recommend all users to upgrade to Flink 1.14.5. Release Artifacts # Maven Dependencies # <dependency> <groupId>org. ...

Continue reading »

Adaptive Batch Scheduler: Automatically Decide Parallelism of Flink Batch Jobs

June 17, 2022 - Lijie Wang Zhu Zhu

Introduction # Deciding proper parallelisms of operators is not an easy work for many users. For batch jobs, a small parallelism may result in long execution time and big failover regression. While an unnecessary large parallelism may result in resource waste and more overhead cost in task deployment and network shuffling. To decide a proper parallelism, one needs to know how much data each operator needs to process. However, It can be hard to predict data volume to be processed by a job because it can be different everyday. ...

Continue reading »

Apache Flink Kubernetes Operator 1.0.0 Release Announcement

June 5, 2022 - Gyula Fora (@GyulaFora) Yang Wang

In the last two months since our initial preview release the community has been hard at work to stabilize and improve the core Flink Kubernetes Operator logic. We are now proud to announce the first production ready release of the operator project. Release Highlights # The Flink Kubernetes Operator 1.0.0 version brings numerous improvements and new features to almost every aspect of the operator. New v1beta1 API version & compatibility guarantees Session Job Management support Support for Flink 1. ...

Continue reading »

Improving speed and stability of checkpointing with generic log-based incremental checkpoints

May 30, 2022 - Roman Khachatryan Yuan Mei

Introduction # One of the most important characteristics of stream processing systems is end-to-end latency, i.e. the time it takes for the results of processing an input record to reach the outputs. In the case of Flink, end-to-end latency mostly depends on the checkpointing mechanism, because processing results should only become visible after the state of the stream is persisted to non-volatile storage (this is assuming exactly-once mode; in other modes, results can be published immediately). ...

Continue reading »

Getting into Low-Latency Gears with Apache Flink - Part Two

May 23, 2022 - Jun Qin Nico Kruber

This series of blog posts present a collection of low-latency techniques in Flink. In part one, we discussed the types of latency in Flink and the way we measure end-to-end latency and presented a few techniques that optimize latency directly. In this post, we will continue with a few more direct latency optimization techniques. Just like in part one, for each optimization technique, we will clarify what it is, when to use it, and what to keep in mind when using it. ...

Continue reading »

Getting into Low-Latency Gears with Apache Flink - Part One

May 18, 2022 - Jun Qin Nico Kruber

Apache Flink is a stream processing framework well known for its low latency processing capabilities. It is generic and suitable for a wide range of use cases. As a Flink application developer or a cluster administrator, you need to find the right gear that is best for your application. In other words, you don’t want to be driving a luxury sports car while only using the first gear. In this multi-part series, we will present a collection of low-latency techniques in Flink. ...

Continue reading »

Apache Flink Table Store 0.1.0 Release Announcement

May 11, 2022 - Jingsong Lee Jiangjie (Becket) Qin

The Apache Flink community is pleased to announce the preview release of the Apache Flink Table Store (0.1.0). Please check out the full documentation for detailed information and user guides. Note: Flink Table Store is still in beta status and undergoing rapid development. We do not recommend that you use it directly in a production environment. What is Flink Table Store # In the past years, thanks to our numerous contributors and users, Apache Flink has established itself as one of the best distributed computing engines, especially for stateful stream processing at large scale. ...

Continue reading »